Divergence-Free WKB Method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergence-free WKB method.

A new semiclassical approach to the linear and nonlinear one-dimensional Schrödinger equation is presented. For both equations our zeroth-order solutions include nonperturbative quantum corrections to the WKB solution and the Thomas-Fermi solution, thereby allowing us to make uniformly converging perturbative expansions of the wave functions. Our method leads to a new quantization condition tha...

متن کامل

Quasilinearization method and WKB

Solutions obtained by the quasilinearization method (QLM) are compared with the WKB solutions. While the WKB method generates an expansion in powers of h̄, the quasilinearization method (QLM) approaches the solution of the nonlinear equation obtained by casting the Schrödinger equation into the Riccati form by approximating nonlinear terms by a sequence of linear ones. It does not rely on the ex...

متن کامل

Complex trajectory method in time-dependent WKB.

We present a significant improvement to a complex time-dependent WKB (CWKB) formulation developed by Boiron and Lombardi [J. Chem. Phys. 108, 3431 (1998)] in which the time-dependent WKB equations are solved along classical trajectories that propagate in complex space. Boiron and Lombardi showed that the method gives very good agreement with the exact quantum mechanical result as long as the wa...

متن کامل

Divergence-free Wavelet Projection Method for Incompressible Viscous Flow

We present a new wavelet numerical scheme for the discretization of Navier-Stokes equations with physical boundary conditions. The temporal discretization of the method is inspired from the projection method. Helmholtz-Hodge decomposition using divergence-free and curl-free wavelet bases satisfying physical boundary conditions allows to define the projection operator. This avoids the use of Poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2002

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.88.170404